Long-Short Term Echo State Network for Time Series Prediction
نویسندگان
چکیده
منابع مشابه
Long-Term Prediction of Time Series Using State-Space Models
State-space models offer a powerful modelling tool for time series prediction. However, as most algorithms are not optimized for longterm prediction, it may be hard to achieve good prediction results. In this paper, we investigate Gaussian linear regression filters for parameter estimation in state-space models and we propose new long-term prediction strategies. Experiments using the EM-algorit...
متن کاملShort-term stock price prediction based on echo state networks
0957-4174/$ see front matter 2008 Elsevier Ltd. A doi:10.1016/j.eswa.2008.09.049 * Corresponding author. Tel.: +86 10 62777703. E-mail addresses: [email protected] com (Z. Yang), [email protected] (Y. Song). Neural network has been popular in time series prediction in financial areas because of their advantages in handling nonlinear systems. This paper presents a study of using a no...
متن کاملL1/2 Norm Regularized Echo State Network for Chaotic Time Series Prediction
Echo state network contains a randomly connected hidden layer and an adaptable output layer. It can overcome the problems associated with the complex computation and local optima. But there may be ill-posed problem when large reservoir state matrix is used to calculate the output weights by least square estimation. In this study, we use L1/2 regularization to calculate the output weights to get...
متن کاملModular Echo State Neural Networks in Time Series Prediction
Echo State neural networks (ESN), which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater predictive ability. In this paper we study the influence of the memory length on predictive abilities of Echo State neural networks. The conclusion is that Echo State neural networks with fixed memory length can h...
متن کاملShort-Term And Long-Term Ahead Prediction Of Northern Hemisphere Sunspots Chaotic Time Series Using Dynamic Neural Network Model
Multi –Step ahead prediction of a chaotic time series is a difficult task that has attracted increasing interest in recent years. The interest in this work is the development of nonlinear neural network models for the purpose of building multi-step chaotic time series prediction. In the literature there is a wide range of different approaches but their success depends on the predicting performa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2994773